Low Salinity, Cool-Core Cyclonic Eddy Detected North- west of Luzon during the South China Sea Monsoon
نویسنده
چکیده
To detect eddies, intensive surveys of the northeast South China Sea (SCS) (114°30′– 121°30′ E, 17°–22°N) were conducted in July 1998 during the international SCS Monsoon Experiment (SCSMEX), the U.S. Navy using Airborne Expendable Bathythermograph and Conductivity-Temperature-Depth sensors (AXBT/AXCTD), and the Chinese Academy of Sciences using Acoustic Doppler Current Profilers (ADCP). The hydrographic survey included 307 AXBT and 9 AXCTD stations, distributed uniformly throughout the survey area. The ADCP survey had two sections. The velocity field inverted from the AXBT/AXCTD data and analyzed from the ADCP data confirm the existence of a low salinity, cool-core cyclonic eddy located northwest of Luzon Island (i.e., the Northwest Luzon Eddy). The radius of this eddy is approximately 150 km. The horizontal temperature gradient of the eddy increases with depth from the surface to 100 m and then decreases with depth below 100 m. The cool core was evident from the surface to 300 m depth, being 1°–2°C cooler inside the eddy than outside. The tangential velocity of the eddy is around 30–40 cm/s above 50 m and decreases with depth. At 300 m depth, it becomes less than 5 cm/s.
منابع مشابه
NOTES AND CORRESPONDENCE Upper-Layer Circulation in the South China Sea*
Upper-layer circulation is investigated by using all available historical temperature profiles combined with climatological temperature–salinity relationships in the South China Sea. Two cyclonic eddies are revealed: one is located east of Vietnam (called the East Vietnam eddy) and the other is off northwest Luzon (called the West Luzon eddy). Both local Ekman pumping and remotely forced basin-...
متن کاملIntrusion of the North Pacific waters into the South China Sea
Water mass distribution was studied by analyzing historical hydrographic data in the South China Sea. Despite considerable modification of characteristics as a result of mixing, waters of both salinity maximum and minimum of the North Pacific origin were traced on the density surfaces around 25.0 and 26.73 su, respectively. In the salinity maximum layer, property distribution suggests an intrus...
متن کاملWind-Driven South China Sea Deep Basin Warm-Core/ Cool-Core Eddies
The formation of the South China Sea (SCS) deep basin warm-core and cool-core eddies was studied numerically using the Princeton Ocean Model (POM) with 20 km horizontal resolution and 23 sigma levels conforming to a realistic bottom topography. Numerical integration was divided into pre-experimental and experimental stages. During the preexperimental stage, we integrated the POM model for three...
متن کاملPhysical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea
[1] Two cruises were carried out in the summer and winter of 1998 to study coupled physical-chemical-biological processes in the South China Sea and their effects on phytoplankton stock and production. The results clearly show that the seasonal distributions of phytoplankton were closely related to the coupled processes driven by the East Asian Monsoon. Summer southwesterly monsoon induced upwe...
متن کاملEast Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea
Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, ...
متن کامل